could easily be constructed without a change of the unit-cell parameters.
It therefore seems that the distortions of the TiO_{6} octahedra in $\mathrm{BaTi}_{2} \mathrm{O}_{5}$ are not caused by the bondstrength distribution and cannot be interpreted on electrostatic grounds only. Baur (1961) pointed out that the Ti coordination in PbTiO_{3} (Shirane, Pepinsky \& Frazer, 1956) with Ti-O distances of $1.78,4 \times 1.98$ and $2 \cdot 38 \AA$ should be described as a $5+1$ coordination and a similar distortion of a TiO_{6} octahedron in $\mathrm{Na}_{2} \mathrm{Ti}_{3} \mathrm{O}_{7}$ has been interpreted by Andersson \& Wadsley (1961) as a tendency of Ti towards 5 coordination. Table 3 gives distances between Ti atoms and their six nearest O neighbours for a number of compounds

Table 3. Distances between titanium atoms and their six nearest oxygen neighbours for a number of compounds with different Ti coordinations

Compound	Bond lengths (\AA)
$\mathrm{Y}_{2} \mathrm{TiO}_{5}{ }^{\text {a }}$	$\text { Ti-O: } \underset{3.89}{1 \cdot 78}, 1 \cdot 87,1 \cdot 91,2 \times 1 \cdot 94$
Fresnoite	Ti-O: $1 \cdot 63,4 \times 2 \cdot 00,3.58$
$\mathrm{Ba}_{2} \mathrm{TiOSi}_{2} \mathrm{O}_{7}{ }^{\text {b }}$	
Innelite	$\begin{array}{cccc} \mathrm{Ti}(1)-\mathrm{O}: & 1.62, & 1.99, \\ 2.06,3.67 \end{array}$
$\mathrm{Na}_{2} \mathrm{Ba}_{3}(\mathrm{Ca}, \mathrm{Na})(\mathrm{Ba}, \mathrm{K}, \mathrm{Mn})$	$\begin{array}{r} \mathrm{Ti}(2)-\mathrm{O}: \begin{array}{c} 1 \cdot 90,1 \cdot 92,2 \cdot 00,2 \cdot 04, \\ 2 \cdot 09,2 \cdot 16 \end{array} \end{array}$
$\mathrm{Ti}_{3} \mathrm{O}_{4}\left(\mathrm{SO}_{4}\right)_{2}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right)_{2}{ }^{\text {c }}$	$\begin{array}{r} \mathrm{Ti}(3)-\mathrm{O}: 1 \cdot 71,1 \cdot 93,1 \cdot 96,1 \cdot 98 \\ 2 \cdot 01,3 \cdot 17 \end{array}$
$\mathrm{BaTi} \mathrm{F}_{2}{ }_{5}{ }^{\text {d }}$	$\mathrm{Ti}(1)-\mathrm{O}: \begin{gathered} 1.71, \\ 2.06,2.47 \end{gathered}$
$\mathrm{PbTiO}_{3}{ }^{\text {e }}$	Ti-O: $1 \cdot 78,4 \times 1 \cdot 98,2.38$
$\mathrm{Na}_{2} \mathrm{Ti}_{3} \mathrm{O}_{7}{ }^{\text {f }}$	$\mathrm{Ti}(2)-\mathrm{O}: \underset{2 \times 1.94,2.34}{ }=$

References: (a) Mumme \& Wadsley (1968); (b) Moore \& Louisnathan (1969); (c) Chernov et al. (1971); (d) This work; (e) Shirane et al. (1956); (f) Andersson \& Wadsley (1961).
with Ti in different coordinations. It can be seen that there is no sharp limit between 5 and 6 -coordinated Ti. While Ti is clearly 5 -coordinated in $\mathrm{Y}_{2} \mathrm{TiO}_{5}$, fresnoite, and partly in innelite, other Ti atoms in innelite, in $\mathrm{BaTi}_{2} \mathrm{O}_{5}, \mathrm{PbTiO}_{3}$ and $\mathrm{Na}_{2} \mathrm{Ti}_{3} \mathrm{O}_{7}$ have a $5+1$ coordination.

I thank Professors W. H. Baur and I. D. Brown for valuable discussions, and the Computing Centre of the Ruhr-Universität Bochum for computing time.

References

Andersson, S. \& Wadsley, A. D. (1961). Acta Cryst. 14, 1245-1249.
Baur, W. H. (1961). Acta Cryst. 14, 214-216.
Baur, W. H. (1970). Trans. Amer. Cryst. Assoc. 6, 129-155.
Baur, W. H. (1972). Amer. Min. 57, 709-731.
Brown, I. D. \& Shannon, R. D. (1973). Acta Cryst. A 29, 266-282.
Chernov, A. N., Ilyukhin, V. V., Maksimov, B. A. \& Belov, N. V. (1971). Kristallografiya, 16, 87-92.
Harrison, F. W. (1956). Acta Cryst. 9, 495-500.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Meier, W. M. \& Villiger, H. (1969). Z. Kristallogr. 129, 411-423.
Moore, P. B. \& Louisnathan, S. J. (1969). Z. Kristallogr. 130, 438-448.
Mumme, W. G. \& Wadsley, A. D. (1968). Acta Cryst. B24, 1327-1333.
Pauling, L. (1960). The Nature of the Chemical Bond. 3rd ed. Ithaca: Cornell Univ. Press.
Shirane, G., Pepinsky, R. \& Frazer, B. C. (1956). Acta Cryst. 9, 131-140.
Tillmanns, E. \& Gebert, W. (1973). Acta Cryst. B29, 2789-2794.

Acta Cryst. (1974). B30, 2896

1,6:8,13-Cyclopropanediylidene[14]annulene

By Angelo Mugnoli and Massimo Simonetta
Istituto di Chimica Fisica dell'Università e Centro C.N.R., Via Golgi 19, 20133 Milano, Italy

(Received 5 August 1974; accepted 8 August 1974)

Abstract

C}_{17} \mathrm{H}_{12}\), monoclinic, $C 2 / c, Z=8, a=19 \cdot 485$ (3), $b=6.812$ (2), $c=17.881$ (5) $\AA, \beta=108.52$ (2) ${ }^{\circ}, D_{m}=$ $1 \cdot 273, D_{x}=1 \cdot 277 \mathrm{~g} \mathrm{~cm}^{-3}$, m.p. $169-170^{\circ} \mathrm{C}$. Mo $K \alpha$ diffractometer data. Final $R=0.054$ on all observed amplitudes. The strain imposed by the bridges of the annulene perimeter and by the cyclopropane ring seem to have a balancing rather than a synergic effect; as a result the annulene ring is nearly planar with bond lengths close to the aromatic value.

Introduction. X-ray diffraction data were measured with Mo $K \alpha$ radiation on a Syntex $P \bar{\top}$ four-circle diffractom-

eter equipped with graphite monochromator. Cell dimensions were obtained from 26 reflexions (plus their equivalents) for $\lambda=0.71069 \AA$. Systematic absences were $h k l$ for $h+k$ odd, $h 0 l$ for l odd. A crystal of dimensions $0.30 \times 0.35 \times 0.40 \mathrm{~mm}$ was used. Intensities were collected to a maximum 2θ value of 55° ($\theta-2 \theta$ scan mode, scan width $2 \cdot 1^{\circ}+\alpha_{1} \alpha_{2}$ separation, variable scan speed between 1 and $12^{\circ} \mathrm{min}^{-1}$, dead time for coincidence correction $2.1 \times 10^{-6} \mathrm{~s}$). The background was counted for half the total scanning time on each side of the reflexion. Three check reflexions were monitored periodically to test crystal
decomposition or movement. Of 2607 measured unique data, 2423 had intensity above background. The variance $\sigma^{2}\left(I_{\text {rel }}\right)$ was calculated as $\left[S+B+(0.02 S)^{2}\right] v^{2}$, with $S=$ scan count, $B=$ total background count and $v=$ scan speed. Lorentz and polarization factors were applied; absorption effects were neglected ($\mu=0.8$ cm^{-1} for Mo $K \alpha$ radiation). The $N(z)$ test and the statistics on the normalized structure factors were in full agreement with the centric distribution.

Fig. 1. One molecule of the title compound viewed along two principal axes of inertia. mm2-averaged geometric parameters are reported. Bond lengths are corrected for rigid-body motion. Values in parentheses refer to torsion angles, starred values to dihedral angles. Thermal ellipsoids (Johnson, 1965) for carbon atoms are drawn at probabilities 0.40 and 0.20 in the upper and lower part of the figure respectively. Hydrogen atoms are on an arbitrary scale.

The structure was solved by direct methods with the computer programs of Bianchi, Destro \& Gavezzotti (1972). After an initial false solution, reassignment of the starting set of reflexions led to an E map where all the 17 carbon atoms were easily recognizable. Refinement on all observed reflexions was by a full-matrix least-squares process on scale factor, extinction parameter [Zachariasen, 1963; Larson, 1967, equation (3); Kerr \& Ashmore, 1974, equation (5)], anisotropic carbon and (after the calculation of a difference map) isotropic hydrogen atoms, by minimizing the function $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ with weights $w=1 / \sigma^{2}(F)$. The program employed was a modified version of ORFLS (Busing, Martin \& Levy, 1962). Scattering factors for C were obtained from Cromer \& Waber (1965) and for H from Stewart, Davidson \& Simpson (1965). In the final cycle most shifts were less than $0 \cdot 1 \sigma$, the maximum shift being $0 \cdot 3 \sigma . R=\Sigma| | F_{o}\left|-\left|F_{c}\right|\right| / \Sigma\left|F_{o}\right|$ converged to 0.054 for the 2423 observed reflexions (0.061 for all 2607 data), with a goodness of fit $\left[\Sigma w(\Delta F)^{2} /(n-p)\right]^{1 / 2}=$ 1.60.* A final difference map showed no significant features, the electron density values being between $\pm 0 \cdot 30$ e \AA^{-3}.
The final atomic parameters are listed in Table 1. Bond distances, uncorrected and corrected for rigidbody motion (Schomaker \& Trueblood, 1968; program written by Filippini \& Gramaccioli, 1969) are reported in Table 2. Bond, torsion, and dihedral angles between least-squares planes are summarized in Fig. 1. Mean values for the e.s.d.'s are $0.003 \AA, 0.15^{\circ}$ and 0.4° respectively for bond lengths, bond angles and torsion angles involving only C atoms; $0.02 \AA$ for $\mathrm{C}-\mathrm{H}$ bond lengths and 1° for $\mathrm{C}-\mathrm{C}-\mathrm{H}$ and $\mathrm{H}-\mathrm{C}-\mathrm{H}$ bond angles.

* A table of observed and calculated structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30610 (14 pp., 1 microfiche). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

Table 1. Fractional coordinates and thermal parameters with standard deviations
The thermal parameters are of the form $\exp \left[-\left(B_{11} h^{2}+2 B_{12} h k+\ldots\right) \times 10^{-4}\right]$.

	x	y	z	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
C(1)	$0 \cdot 2510$ (1)	$0 \cdot 2297$ (2)	$0 \cdot 1632$ (1)	35 (1)	137 (3)	25 (0)	-5 (1)	9 (0)	3 (1)
C(2)	$0 \cdot 3222$ (1)	$0 \cdot 2860$ (2)	$0 \cdot 2018$ (1)	45 (1)	216 (4)	28 (1)	-32 (1)	5 (0)	-10(1)
C(3)	$0 \cdot 3838$ (1)	$0 \cdot 1976$ (3)	$0 \cdot 1950$ (1)	29 (1)	363 (5)	35 (1)	-37 (1)	2 (0)	13 (1)
C(4)	$0 \cdot 3929$ (1)	0.0182 (3)	$0 \cdot 1626$ (1)	22 (0)	390 (5)	40 (1)	0 (1)	8 (0)	24 (1)
C(5)	$0 \cdot 3432$ (1)	-0.1270 (3)	$0 \cdot 1280$ (1)	29 (1)	272 (4)	38 (1)	19 (1)	14 (0)	11 (1)
C(6)	$0 \cdot 2683$ (1)	-0.1077 (2)	$0 \cdot 1039$ (1)	27 (0)	184 (3)	25 (0)	7 (1)	11 (0)	-3 (1)
C(7)	$0 \cdot 2148$ (1)	-0.2531 (2)	0.0864 (1)	35 (1)	147 (3)	34 (1)	3 (1)	12 (0)	-6 (1)
C(8)	$0 \cdot 1463$ (1)	-0.1750 (2)	0.0773 (1)	28 (0)	184 (3)	26 (0)	-12 (1)	7 (0)	3 (1)
C(9)	$0 \cdot 0818$ (1)	-0.2715 (3)	0.0714 (1)	34 (1)	247 (4)	41 (1)	-28 (1)	6 (0)	21 (1)
$\mathrm{C}(10)$	0.0207 (1)	-0.1861 (3)	$0 \cdot 0812$ (1)	24 (1)	424 (6)	51 (1)	-19 (1)	8 (1)	55 (2)
C(11)	$0 \cdot 0114$ (1)	-0.0056 (3)	$0 \cdot 1124$ (1)	25 (1)	479 (7)	57 (1)	26 (2)	18 (1)	67 (2)
C(12)	$0 \cdot 0601$ (1)	$0 \cdot 1454$ (3)	$0 \cdot 1435$ (1)	36 (1)	346 (5)	45 (1)	47 (1)	22 (1)	38 (1)
C(13)	$0 \cdot 1288$ (1)	$0 \cdot 1648$ (2)	$0 \cdot 1359$ (1)	32 (0)	190 (3)	32 (1)	28 (1)	15 (0)	24 (1)
C(14)	$0 \cdot 1873$ (1)	$0 \cdot 2799$ (2)	$0 \cdot 1789$ (1)	47 (1)	167 (3)	31 (1)	18 (1)	17 (0)	-1 (1)
C(15)	$0 \cdot 2324$ (1)	0.0860 (2)	0.0977 (1)	23 (0)	155 (3)	22 (0)	-3 (1)	8 (0)	1 (1)
C(16)	$0 \cdot 1524$ (1)	0.0419 (2)	0.0799 (1)	22 (0)	167 (3)	25 (0)	2 (1)	8 (0)	10 (1)
C(17)	$0 \cdot 1787$ (1)	$0 \cdot 1450$ (2)	$0 \cdot 0192$ (1)	27 (0)	194 (3)	24 (0)	-4 (1)	8 (0)	9 (1)

Table 1 (cont.)

	x	y	z	$B\left(\AA^{2}\right)$
H(1)	$0 \cdot 328$ (1)	0.392 (3)	$0 \cdot 236$ (1)	$6 \cdot 6$ (4)
H(2)	$0 \cdot 430$ (1)	$0 \cdot 267$ (3)	$0 \cdot 223$ (1)	$7 \cdot 2$ (4)
H(3)	$0 \cdot 444$ (1)	-0.016 (2)	$0 \cdot 171$ (1)	$7 \cdot 1$ (4)
H(4)	$0 \cdot 362$ (1)	-0.258 (2)	$0 \cdot 122$ (1)	$6 \cdot 2$ (4)
H(5)	0.226 (1)	-0.389 (2)	0.087 (1)	$5 \cdot 7$ (3)
H(6)	0.080 (1)	-0.410 (3)	0.063 (1)	$7 \cdot 1$ (4)
H(7)	-0.023 (1)	-0.273 (2)	$0 \cdot 069$ (1)	$7 \cdot 2$ (4)
H(8)	-0.036 (1)	0.013 (3)	$0 \cdot 120$ (1)	$8 \cdot 4$ (4)
H(9)	0.047 (1)	$0 \cdot 241$ (2)	$0 \cdot 175$ (1)	$6 \cdot 5$ (4)
$\mathrm{H}(10)$	$0 \cdot 184$ (1)	$0 \cdot 377$ (2)	0.216 (1)	$6 \cdot 1$ (3)
H(11)	$0 \cdot 179$ (1)	0.065 (2)	-0.027 (1)	$4 \cdot 6$ (3)
H(12)	$0 \cdot 167$ (1)	$0 \cdot 285$ (2)	0.009 (1)	$4 \cdot 5$ (3)

Table 2. Bond lengths (\AA)

	Cor-				
	Cor-				
	Observed rected				

Discussion. This structure determination is part of a study of bridged annulenes for which the chemical behaviour is connected to the strain imposed by the bridges on the annulene perimeter. Accordingly, bond lengths in the annulene ring may range from distances not far from the aromatic value (Gavezzotti, Mugnoli, Raimondi \& Simonetta, 1972; Gramaccioli, Mugnoli, Pilati, Raimondi \& Simonetta, 1972) to a succession of localized single and double bonds giving rise to olefinic behaviour (Gramaccioli, Mimun, Mugnoli \& Simonetta, 1973).

In the case of a single bridge imposed on a [10] annulene derivative it has been shown that the substituents on the bridge play an important role in shifting the equilibrium from the annulene (Gramaccioli \& Simonetta, 1971) to the bisnorcaradiene configuration (Bianchi, Morosi, Mugnoli \& Simonetta, 1973). In the last case however the bond which closes the cyclopropane ring has an extraordinary length ($1.81 \AA$). In the title compound, which was prepared by Reel \& Vogel (1972), the cyclopropane ring is in a different situation and its geometry quite normal. The molecule shows $m m 2$ symmetry within experimental error. The $\mathrm{C}-\mathrm{C}$ distances in the annulene perimeter are in the range $1 \cdot 389-1 \cdot 406 \AA$ (values corrected for rigidbody motion; mean $1 \cdot 398 \AA$). Torsion angles along the annulene ring show that the misalignment between p_{z} orbitals of adjacent carbon atoms never exceeds 17°. In comparison with previously determined structures of
bridged annulenes (Dobler \& Dunitz, 1965; Ganis \& Dunitz, 1967; and papers quoted above) the present compound shows the least deviation from planarity for the annulene perimeter, whose atoms are at a distance not more than $0 \cdot 32 \AA$ from the $C(2), C(5), C(9), C(12)$ plane. In the cyclopropane ring the $\mathrm{C}(15)-\mathrm{C}(16)$ length ($1.526 \AA, \sigma 0.002 \AA$) is slightly longer than the other two bonds, the difference, however, being only possibly significant. On the whole, it seems that the connexion between $\mathrm{C}(15)$ and $\mathrm{C}(16)$ by a cyclopropane bridge is the best way to relieve the strain imposed otherwise by the two methylene bridges on the annulene perimeter.
$\mathrm{C}-\mathrm{H}$ lengths are in the range $0.93-1.01 \AA$. The shortest intermolecular contacts are between
$\mathrm{C}(17)$ in x, y, z and $\mathrm{C}(17)$ in $\frac{1}{2}-x, \quad \frac{1}{2}-y,-z(3.38 \AA)$,

$\mathrm{C}(1)$	and $\mathrm{H}(5)$ in $x, \quad 1+y, \quad z(2 \cdot 90 \AA)$,
$\mathrm{C}(13)$	and $\mathrm{H}(1)$ in $\frac{1}{2}-x,-\frac{1}{2}+y, \frac{1}{2}-z(2 \cdot 86 \AA)$,
$\mathrm{H}(4)$	and $\mathrm{H}(8)$ in
$\mathrm{H}(2)$	and $\mathrm{H}(2)$ in $1-x,-\frac{1}{2}+y, \quad z(2 \cdot 54 \AA)$,

We thank Professor E. Vogel for a sample of the crystals.

References

Bianchi, R., Destro, R. \& Gavezzotti, A. (1972). Atti Accad. Nazl. Lincei. Rend. Classe Sci. Fis. Mat. Nat. 52, 114-119.
Bianchi, R., Morosi, G., Mugnoli, A. \& Simonetta, M. (1973). Acta Cryst. B29, 1196-1208.

Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104-109.
Dobler, M. \& Dunitz, J. D. (1965). Helv. Chim. Acta, 48, 1429-1440.
Filippini, G. \& Gramaccioli, C. M. (1969). Ric. Sci. 39, 156-162.
Ganis, P. \& Dunitz, J. D. (1967). Helv. Chim. Acta, 50, 2369-2378.
Gavezzotti, A., Mugnoli, A., Raimondi, M. \& Simonetta, M. (1972). J. Chem. Soc. Perkin II, pp. 425-431.
Gramaccioli, C. M., Mimun, A. S., Mugnoli, A. \& Simonetta, M. (1973). J. Amer. Chem. Soc. 95, 31493154.

Gramaccioli, C. M., Mugnoli, A., Pilati, T., Raimondi, M. \& Simonetta, M. (1972). Acta Cryst. B28, 2365-2370.

Gramaccioli, C. M. \& Simonetta, M. (1971). Acta Cryst. B27, 2231-2237.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Kerr, K. A. \& Ashmore, J. P. (1974). Acta Cryst. A30, 176-179.
Larson, A. C. (1967). Acta Cryst. 23, 664-665.
Reel, H. \& Vogel, E. (1972). Angew. Chem. Int. Ed. 11, 1013-1014.
Schomaker, V. \& Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

